

Full jet reconstruction in p + p collisions at $\sqrt{s} = 200 \,\text{GeV}$ in PHENIX

Yue Shi Lai

Columbia University and Nevis Laboratories/PHENIX Collaboration

DNP08, Session MD

Jet reconstruction as convolution

Convolution is a generalization of the cone algorithm (without merge/split)

"Cone" R = 0.5

Gaussian kernel $\sigma = 0.5$

Gaussian filter:

$$\tilde{p}_T(\eta, \varphi) = p_T \circledast h \equiv \iint_{\mathbb{R} \times S^1} d\eta' d\varphi' p_T(\eta', \varphi') h(\eta - \eta', \varphi - \varphi') = \text{max!}$$

$$h(\eta, \varphi) = e^{-(\eta^2 + \varphi_{ar}^2)/(2\sigma^2)}$$

Why Gaussian filter

- Generalized cone algorithm preserves the "cone"-like property
- Naturally collinear and infrared safe
- Smooth angular cut-offs for finite acceptance e.g. PHENIX Central Arm
 - $-0.35 < \eta < 0.35$
 - $-0.59 < \varphi < 0.98, 2.16 < \varphi < 3.73$
- Generalizable to central Au + Au at $\sqrt{s_{NN}} = 200$ GeV while having
 - fake jet rate sufficiently low to measure jet quenching
 - near unitary efficiency for the most RHIC-accessible jet energy range
- Fast, for central Au + Au at $\sqrt{s_{NN}} = 200$ GeV multiplicity:
 - \approx 1.9× reconstructed event/s of Fast k_T
 - ightharpoonup > 30 imes reconstructed event/s of SISCone
- Partially inspired by the energy flow observable $f_{\overline{\Omega}_c}$ in C. F. Berger, T. Kucs, G. Sterman, Phys. Rev. D **68**, 014012 (2003); G. Sterman, hep-ph/0501270
- Study for p + p collisions: arXiv:0806.1499, paper regarding the heavy ion study is coming soon

PHENIX Run-5

- Data set: PHENIX Run-5 p + p at $\sqrt{s} = 200$ GeV
 - Tracking detectors: Drift Chamber (DC), Pad Chambers (PC) 1/3
 - Calorimeters: Lead-Scintillator (PbSc), Lead-Glass (PbGl)
- Gaussian kernel with $\sigma = 0.3$
- Jet reconstruction cuts for background suppression:
 - $ightharpoonup \ge 3$ particles in a 60° cone

Event display (PHENIX data)

- Top: filter density contour
- Bottom: (charged and neutral) p_T Lego plot
- Red line: jet axes

Event display (PHENIX data)

- Top: filter density contour
- Bottom: (charged and neutral) p_T Lego plot
- Red line: jet axes

Unsymmetrized correlation

 Unsymmetrized, one-sided correlation to show the full PHENIX azimuthal acceptance effect

Jet–jet correlation, symmetric $4 < p_{T,jet,rec} < 6 \text{ GeV}/c$

- We recover a uniform azimuth acceptance by dividing same-event by mixed-event jet-jet correlation
- Correlation function is symmetric even with unsymmetrized PHENIX acceptance

Jet–jet correlation, symmetric 4 $< p_{T,jet,rec} < 6 \,\text{GeV}/c$

■ Gaussian fit: mean = 3.1078(92), $\sigma = 4.186(10)$

Jet–jet correlation, symmetric 6 $< p_{T,jet,rec} < 8 \,\text{GeV}/c$

• Gaussian fit: mean = 3.1076(98), $\sigma = 2.8196(95)$

Jet–jet correlation, symmetric 8 $< p_{T,jet,rec} < 12 \,\text{GeV}/c$

• Gaussian fit: mean = 3.1189(92), $\sigma = 2.1858(87)$

Jet–jet correlation, symmetric $12 < p_{T,jet,rec} < 16 \,\text{GeV}/c$

• Gaussian fit: mean = 3.141(20), $\sigma = 1.636(25)$

Fragment j_T distribution

- Non-perturbative component uniform across all p_T range
- Difference in slope due to Seagull effect

Fragment j_T distribution, 4–6 vs. 12–16 GeV/c

 $N_{\rm jet}^{-1} (2\pi j_{_T})^{-1} dN/dj_{_T} ({\rm GeV}^{-2}C^2)$

Summary

- Gaussian filter as a jet reconstruction algorithm insensitive to large angle distortion – either acceptance limit or heavy ion fluctuation
 - First application on PHENIX
- PHENIX acceptance limit does not hinder jet reconstruction or 2π -azimuthal jet variable
- Jet spectrum and fragmentation will be available soon, after completing the detector simulation
- Cu + Cu, Au + Au results are underway

15 / 24

Part I

Backup

Conversion tracks

■ Track p_T misreconstruction due to early decays

Uncorrected $p_{T,jet}$ spectrum

- Full detector trigger and p_T scale effect
- Residual non-linearity is expected to go away with proper trigger efficiency and p_T correction

PYTHIA triggered p_T spectrum, filter vs. SISCone vs. k_{\perp}

PYTHIA jet multiplicity, filter vs. SISCone vs. k_{\perp}

PYTHIA p_T scale, filter vs. SISCone vs. k_{\perp}

PYTHIA dijet angular balance, filter vs. k_{\perp}

PYTHIA dijet p_T balance (p_T scale normalized), filter vs. k_{\perp}

PYTHIA 3 jet angular distribution, filter vs. SISCone vs. k_{\perp}

